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ABSTRACT

The development of intelligent ship control systems in real-world conditions relies heavily on the accurate
identification and prediction of ship seakeeping and maneuvering trajectories. In this study, we
comprehensively evaluate a selection of deep learning methods to assess their learning capabilities in terms
of idealizing ship motion behavior in realistic operational environments. To recover real conditions, we
utilize historical Automatic Identification System (AIS) data and a time domain 6 Degree of Freedom (6-
DoF) grounding dynamics model to generate ship motion sequences for a Ro-Ro passenger ship operating
in the Gulf of Finland. Via a rigorous evaluation process, we validate the performance of these methods
using extensive data streams. The analysis includes the identification and estimation of uncertainties between
two ports. The paper demonstrates the proficiency of the selected deep learning methods in capturing ship
maneuvering features, their potential use in the design of ship control and intelligent decision support
systems.
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INTRODUCTION

Seakeeping prediction methods can enhance our understanding of the dynamic behaviour of ships in stochastic seaways. The
models are valuable for improving ship design operational efficiency and safety of ship operations. The development and use
of intelligent decision support systems should account for motions and manoeuvres in real operational conditions. Predicting
ship motions under real conditions provides a unique opportunity to help crew members understand ship dynamics in advance
of a collision or grounding event (Zhang et al., 2023). The integration of empirical data with neural networks in deep learning
models shows great promise. However, among the multitude of neural network models, the method that best captures ship
manoeuvring features requires comparison and evaluation. Therefore, this paper aims to evaluate the learning capabilities of
selected deep learning methods.

With the ongoing advancement in sensor and identification technologies, ship maneuvering system identification methods have
emerged as a distinct set of techniques for predicting ship motions. Ship maneuvering parameter identification models are
categorized into parametric and non-parametric. Parametric estimation models quantify ship dynamics using established ship
theory (e.g., Maneuvering Modelling Group - MMG or Abkowitz models), to train large data sets. Recently the nu- Support
Vector Machine (SVM) and a 3-DOF Abkowitz model have been utilized (Wang et al., 2019), while the extended Kalman
Filter (EKF) has been coupled with the MMG model (Zeng et al., 2021) to predict hydrodynamic derivatives (Liu et al., 2021).
Taimuri et al., (2022) introduced a predictive analytics approach for grounding avoidance using a rapid 6-DoF ship
manoeuvring model. However, incorporating hydrometeorological conditions (wave, wind, current, etc.) into these methods
poses challenges.
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Non-parametric estimation methods quantify ship dynamics without relying on predefined models. Prominent models include
Artificial Neural Networks (ANN) (Silva et al., 2022), machine learning methods, such as Gaussian Process Regression (GPR)
(Ouyang et al., 2021; Ramirez et al., 2022), Recurrent Neural Networks (RNN) (D'Agostino et al., 2023), Long Short-Term
Memory models (LSTM) (Sun et al., 2022; Zhang et al., 2021), Gated Recurrent Units (GRU) (Zhou et al., 2023), and
Transformers (Zhang et al., 2023). These models can be trained using data from simulated free-running tests or sea trials.
Recently, Luo et al. developed an ANN model to predict the 3-DOF motion of unmanned surface vehicles (Luo et al., 2022).
Non-parametric models have shown potential in identifying ship motion features and rapidly predict ship motions.

To analyze the differences in predicting ship motions using deep learning methods this paper evaluates and compares the
learning efficacy and capabilities of the above-mentioned methods.

SHIP MOTIONS AND DATA

The analysis of ship motions often treats the ship as a rigid body moving in six degrees of freedom (6-DOF), using an earth-
and ship body-fixed systems. In this paper, to capture the 6-DOF ship motions in real operational conditions, AIS (Automatic
Identification System) ship trajectories are reconstructed for a ship operating between two ports. Time-domain hydro-
meteorological data are sourced from now-cast data providers, and GEBCO (General Bathymetric Chart of the Oceans).
Bathymetry data are employed to map the waterway (see Zhang et al., 2023 and Figure 1).

Figure 1: 6-DoF ship motions along ship trajectories between two ports.

The data collected serve as inputs to the FSI model of Taimuri et al., (2022) which idealizes the impact of operational conditions
and control devices on ship motions. A Proportional Derivative (PD) controller is utilized to adjust the rudder according to the
ship predefined heading, thus autonomously maintaining the desired AIS track for each voyage in real-time, see Zhang et al.
(2023). The 6-DOF motions of the ship are depicted in Figure 2. The data utilized to compare and evaluate the learning
capabilities of the selected deep learning methods are outlined in Section 3.



Figure 2: The ship maneuvering commands and the corresponding 6 DOF ship motions

METHODS

This section offers an overview of 6 deep learning methods used for ship motion predictions, illustrating the operating principles
of them and briefly describes the underlying mathematical logic of each method. In addition, these models are used to train
ship motion prediction models using varying length of training dataset for the evaluation of model learning capabilities, as
shown in Figure 3.

Figure 3: The flowchart of comparison and evaluation of learning capabilities of selected deep learning methods

Selected Deep Learning Models

In this section, the theories behind the 6 deep learning methods (ANN, RNN, LSTM, Bi-LSTM, GRU, and Transformer) used
in existing studies are presented to help understand the mathematical logics and the advancements in deep learning technologies
for predicting ship motions.

(1) Artificial Neural Networks (ANN)

ANN are a foundational neural network type and a critical component of deep learning technology that may be utilized to
predict ship motions (Luo et al., 2022). It comprises of three main layer blocks, namely, an input layer, one or more hidden
layers, and an output layer. Each neuron in a layer is connected to every neuron in the preceding and following layers, see
Figure 4, where the connections (represented by arrows) contain learnable parameters. The principle of back propagation is
employed to adjust the network parameters, by effectively mapping inputs to outputs to approximate various nonlinear
functions as follows:



ℎ = 𝑋𝑊ℎ + 𝑏ℎ (1)
𝑦 = ℎ𝑊𝑦 + 𝑏𝑦 (2)

where 𝑊ℎ, 𝑊𝑦 are weights and 𝑏ℎ, 𝑏𝑦 are biases.
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Figure 4: Diagram of ANN architecture

(2) Recurrent Neural Networks (RNN)

RNN represent a type of neural network known for their robust processing of time-series data. Recently, they have been used
to predict ship motions (D'Agostino et al., 2023). Unlike ANN, RNN models excel at considering temporal correlations by
integrating historical and current information. RNN also serve as a comprehensive framework of neural networks,
encompassing various variants, see Figure 5. In a standard RNN, the process begins with an initial hidden state, denoted as 𝐻0.
At each time step 𝑡, the input 𝑋𝑡 is fed into the hidden layer of RNN, where it is combined with the hidden state from the
previous time step, see Eq. (3). This combination introduces nonlinearity to the model through an activation function. The
activation function, see Figure 5, is typically the hyperbolic tangent - 𝑡𝑎𝑛ℎ. Ultimately, this process results in the generation
of the current output and the updated hidden state.

𝐻𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑊𝑥 +𝐻𝑡−1𝑊ℎ + 𝑏ℎ) (3)

where W𝑥, Wℎ are the weight matrices and bℎ is the bias.
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Figure 5: The framework and architecture of RNN

(3) Long Short-Term Memory (LSTM)

In conventional RNN, the issues of gradient explosion and gradient vanishing often arise, hindering a network's ability to
predict long sequences effectively (Bianchi et al., 2017). To address this limitation, the LSTM model introduced by Graves, et



al. (2012) was used to train ship motion prediction models (Sun et al., 2022). The LSTM enhances the standard RNN
architecture by incorporating three distinct gates namely input, output, and forget gates. These gates allow to selectively retain
or discard information, thereby enabling it to effectively utilize long-distance temporal information and significantly improve
the model's learning capability.

As illustrated in Figure 6, at a time step 𝑡, the current input information is fed into the LSTM, along with the hidden state from
the previous time step. This information is then nonlinearly processed by the Sigmoid (𝜎) activation function to compute the
values of the three gates. The computations for these gates are defined as follows:

𝐹𝑡 = 𝜎(𝑊𝐹 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝐹) (4)
𝐼𝑡 = 𝜎(𝑊𝐼 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝐼) (5)
𝑂𝑡 = 𝜎(𝑊𝑂 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝑂) (6)

where 𝑊𝐹 , 𝑊𝐼 , 𝑊𝑂 are the weight matrices of the forget, input and output gates respectively, and 𝑏𝐹, 𝑏𝐼, 𝑏𝑂 are the biases
of the three gates respectively.

The candidate memory element �̃�𝑡 is calculated as shown in Eq. (7), utilizing the hyperbolic tangent activation function 𝑡𝑎𝑛ℎ.
This process determines the information to forget or retain by multiplying the forget gate output 𝐹𝑡 with hidden state 𝐻𝑡−1 at
the previous moment. The new cell state 𝐶𝑡 is then obtained by adding the memory cell to the information selected by the
forget gate. Finally, the latest hidden state 𝐻𝑡  is derived by combining the output gate 𝑂𝑡  and the new cell state 𝐶𝑡  as
indicated in Eqs. (8) - (9).

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑂 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝑂) (7)
𝐶𝑡 = 𝐹𝑡 ∗ 𝐻𝑡−1 + 𝐼𝑡 ∗ �̃�𝑡 (8)
𝐻𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (9)
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Figure 6: Diagram of LSTM architecture

(4) Gated Recurrent Units (GRU)

GRU are RNN models improved via LSTM and designed to address issues of gradient explosion and vanishing gradients
(Chung et al., 2014). Their application for ship motion predictions are presented in Zhou et al. (2023). As compared to LSTM,
the GRU simplifies the model architecture by featuring only two gates namely the update gate 𝑍𝑡 and the reset gate 𝑅𝑡, see
Figure 7. This streamlined structure allows the GRU to achieve performance comparable to that of LSTM while enhancing
training efficiency and computational speed. The computational process of the GRU is outlined as follows:

𝑍𝑡 = 𝜎(𝑊𝑍 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝑍) (10)
𝑅𝑡 = 𝜎(𝑊𝑅 ⋅ [𝐻𝑡−1,𝑋𝑡] + 𝑏𝑅) (11)

𝐻෩𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝐻 ⋅ [𝑅𝑡 ∗ 𝐻𝑡−1,𝑋𝑡] + 𝑏𝐻) (12)
𝐻𝑡 = (1− 𝑍𝑡) ∗ 𝐻𝑡−1 + 𝑍𝑡 ∗ 𝐻෩𝑡 (13)

where 𝑊𝑍 , 𝑊𝑅 , 𝑊𝐻 , are weight matrices, 𝑏𝑍, 𝑏𝑅, 𝑏𝐻  are biases, 𝜎 is the Sigmoid function, and tanh is the hyperbolic
tangent function.
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Figure 7: Diagram of GRU architecture

(5) Bi-directional LSTM

In the traditional LSTM model, information can only be recorded from the past, propagating from front to back. However, Bi-
directional LSTM (Bi-LSTM) networks are also capable of combining information from both the past and the future (Zhang et
al., 2024). This is achieved by constructing associations between the current time step information and the information from
both preceding and succeeding time steps, see Figure 8. By leveraging this approach, Bi-LSTM models can learn more complex
temporal features, leading to improved prediction accuracy and robustness, see Eqs. (14)-(16).

𝐻𝑡
𝑓𝑤𝑑 = 𝐿𝑆𝑇𝑀𝑓𝑤𝑑(𝑋𝑡,𝐻𝑡−1

𝑓𝑤𝑑) (14)
𝐻𝑡𝑏𝑤𝑑 = 𝐿𝑆𝑇𝑀𝑏𝑤𝑑(𝑋𝑡 ,𝐻𝑡+1𝑏𝑤𝑑) (15)

𝐻𝑡 = [𝐻𝑡
𝑓𝑤𝑑 ,𝐻𝑡𝑏𝑤𝑑] (16)

where 𝑋𝑡 is the input at moment t, 𝐻𝑡
𝑓𝑤𝑑 is the state of the forward LSTM, 𝐻𝑡𝑏𝑤𝑑 is the state of the reverse LSTM, and 𝐻𝑡

is the output of the Bi-LSTM after combining the positive and negative states.
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Figure 8: Diagram of Bi-directional LSTM structure

(6) Transformers

The introduction of attention mechanisms has significantly enhanced deep learning methods with widespread application in
time series prediction (Zhang et al., 2023). Transformer models employ a multi head self-attention mechanism and an encoder-
decoder architecture to extract deep features from training data. Supervised learning trains on historical data, with model
parameters updated via back-propagation to progressively approximate true values. The Transformer encoder comprises a
series of N identical layers, each containing two sub-layers: a multi-head self-attention mechanism and a fully connected feed-
forward network. Both sub-layers undergo normalization operations and incorporate residual connectivity to facilitate
information flow. The decoder, similarly, comprises of N identical layers. However, it includes an additional third sub-layer in
each sub-layer. This additional sub-layer tasks with masking the self-attention mechanism to ensure predictions for a given
position can only depend on previously known outputs, see Figure 9. To incorporate position information within the model,
positional encoding is applied at the base of both encoder and decoder layers as follows:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑model) (17)
𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑model) (18)

where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension of the 𝑑model.



The attention mechanism utilized in the Transformer model is the scaled dot-product attention. This mechanism involves
stitching together multiple attention heads to form distinct subspaces, enabling the model to learn features from various
perspectives. Additionally, each layer includes a fully connected feed-forward neural network. This network is independent
and applied to each position identically across the sublayers. The computation within this network proceeds through the ReLU
(Rectified Linear Unit) activation function, as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

ඥ𝑑𝑘
)𝑉 (19)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . ,ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (20)
where head𝑖 = Attention(𝑄𝑊𝑖

𝑄 ,𝐾𝑊𝑖
𝐾 ,𝑉𝑊𝑖

𝑉) (21)
𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0,𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (22)

𝑅𝑒𝐿𝑈(𝑥) = (𝑥)+ = 𝑚𝑎𝑥(0,𝑥) = ൜𝑥 𝑖𝑓𝑥 > 0
0 𝑖𝑓𝑥 ⩽ 0 (23)

Where Q, K, V are query, key, and value respectively, ඥ𝑑𝑘 is the vector dimension, h is the number of parallel attention
heads, 𝑊𝑖

𝑄, 𝑊𝑖
𝐾, 𝑊𝑖

𝑉 are the weight matrices, 𝑊1 , 𝑊2  are the weights, and 𝑏1，𝑏2 are the biases.

Multi-Head
Attention

Add&Norm

Feed Forward

Add&Norm

Masked
Multi-Head
Attention

Add&Norm

Q K V

Multi-Head
Attention

Add&Norm

Add&Norm

Feed Forward

Q K V

Q K V

N N

Linear

Softmax

Output

Embedding Embedding

Positional
Encoding

Positional
Encoding

Input Output
(Shifted right)

Figure 9: Diagram of Transformer architecture

Model Evaluation Metrics

To evaluate the performance of these selected deep learning models and quantify the errors between the real and the predicted
ship motions, Root Mean Square Error (RMSE), Mean Square Error (MSE), and R2 value (coefficient of determination) were
evaluated, as:

𝑅𝑀𝑆𝐸 = ඩ
1
𝑁
(𝑦𝑛 − 𝑦𝑛

∧
)2

𝑁

𝑛=1

(24)

𝑀𝑆𝐸 =
1
𝑁
(𝑦𝑛 − 𝑦𝑛

∧
)2

𝑁

𝑛=1

(25)

𝑅2 = 1− (𝑦𝑛 − 𝑦𝑛
∧

)2
𝑁

𝑛=1

/(𝑦𝑛 − 𝑦𝑛
−

)2
𝑁

𝑛=1

(26)

In the above expressions, 𝑦𝑛 is the actual value, 𝑦𝑛
∧

 denotes the predicted value, 𝑦𝑛
−

 is the mean value.



RESULTS AND DISCUSSION
The results presented utilise 400 (80%) of the 500 ship trajectories from Section 2. A 6 DOF ship motions model of each ship
trajectory is used to train the selected 6 deep learning models presented in Section 3.1. The remaining 100 (20%) ship
trajectories serve for validation purposes. (See Section 4.1). To keep the hyperparameters of these deep learning models
unchanged, training sessions encompassing different data volumes are used to examine how the amount of data influences
model efficacy, see Section 4.2. Through this comprehensive analysis, attempts to pinpoint the predictive accuracy of models
and identify the data volume necessary to achieve training saturation. In this sense the results presented may be useful to
develop ship motion prediction models that possess the ability to learn and adapt.

Results of Ship Motions Prediction Using Various Deep Learning Models

Based on the data presented in Section 2, different machine learning models have been utilized to train predictors for ship
motions. The inputs to these models are propeller RPM and rudder angle. The outputs are the 6 DOF of ship motions along
ship trajectories. Their configurations are outlined in Table 1. Hyperparameters are optimized using a grid search method, with
the best parameters determined by the lowest MSE obtained during validation (Zhang et al., 2024).

Table 1: The characteristics of the selected models and the optimal hyperparameters

Model ANN RNN LSTM Bi-LSTM GRU Transformer
Data 2 input variables and 6 output variables

Architecture 3 layers; 64 hidden units per layer; Early stopping: Patience=10;
Optimizer: Adam; Dropout rate: 0.2; Regularization param: 0.1

Encoder: 6
Decoder: 6
Batch Size: 8
Epochs: 48
Inner layers: 1,024

Leaning rate 0.001 0.001 0.001 0.001 0.001
Epochs 18 32 17 21 28

Batch size 10 15 5 10 10

The training and validation losses were calculated based on the basis of training 80% and 20% of 500 ship trajectories,
respectively. Table 2 showcases the validation losses for various models, illustrating that the Transformer model exhibits a
stronger capability for handling the degrees of freedom in ship motions as compared to models like ANN, RNN, LSTM, GRU,
and Bi-LSTM. Theoretically, a Transformer model's advantage stems from its extensive parameter scale, which enhances its
predictive performance and learning capabilities. It is also possible that the observed superiority of the Transformer model is
partly due to the relatively simplistic complexity settings of the ANN, RNN, LSTM, GRU, and Bi-LSTM models.

Table 2: The performance evaluation on the teasing dataset of the selected ship models

ANN RNN LSTM Bi-LSTM GRU Transformer
RMSE 0.096 0.098 0.067 0.055 0.042 0.022

R2 0.365 0.375 0.487 0.511 0.574 0.837

To further assess these models, propeller RPM and rudder angle, were chosen to evaluate the generalization capabilities of the
trained models. The results indicate that the trained deep learning models are proficient in capturing the characteristics of ship
maneuvering under real conditions. However, their accuracy varies. This difference is observed not only in the overall accuracy
of the models but also in the prediction accuracy for various motions (Surge, Sway, Heave, Roll, Pitch, Yaw), see Figure 10.
Overall, the results indicate that the Transformer model is more effective in capturing nonlinear ship motions that mirror actual
operational conditions. This also suggests that its learning capabilities are superior for predicting ship motions in real
conditions, as compared to selected deep learning methods.



Figure 10: The results of the prediction of ship motion dynamics using different models

Evaluation of Learning Capacities

In Section 4.1, this paper trains and predicts the 6 DOF ship motions using the selected deep learning models. Subsequently,
the paper explores how much data is required to saturate results, i.e., to the point where increasing the amount of data no longer



reduces the accuracy. Initially, 400 ship trajectories have been divided into 20 datasets, with the first dataset containing the first
20 trajectories, the second set containing the first 40 trajectories, and so on, until the 20th dataset, which includes all 400
trajectories. An additional 100 trajectories have been reserved as a fixed testing dataset, see Figure 3. The selected deep learning
models have been trained, keeping the hyperparameters from Section 4.1 unchanged. This allowed for the incremental increase
in the amount of training data against the same testing set and the calculation of test loss, thereby identifying the data volume
at which model training reaches saturation.

The test error curves for the various models have been plotted based on the given data with different lengths, see Figure 11.
Each line represents the change in error as the lengths of training dataset increases, which could represent iterations in training
ship motion predictors using the selected models. It displays the general trend that as the number of ship trajectories increases,
the testing loss for each model decreases. This indicates an improvement in the prediction accuracy of these models with the
increase of the training database. Figure 11 illustrates that upon reaching saturation, the loss error of these models ranges from
0.4e-3 to 12.5e-3. Among them, the transformer model exhibits the highest accuracy, while the RNN model performs the
poorest, with its error being threefold higher than that of the transformer. The losses of LSTM, Bi-LSTM, and GRU are between
them.

Figure 11: The influences of different lengths of training data on testing loss evaluation

Figure 12 illustrates the data volume thresholds at which various deep learning models reach saturation, demonstrating that
each model requires a different dataset size to achieve optimal performance. For instance, the Transformer model reaches peak
efficiency at a data volume of 280, while the RNN model achieves its best performance with a data volume of 140, and the
ANN requires only 80. Overall, as the training dataset expands, the increase in predictive accuracy halts, indicating that the
models have reached their maximum learning capabilities. The ANN and LSTM models appear to plateau earlier than others.
This suggests that they require less data to reach their performance limits. It is noted that reaching performance limits does not
imply that these models have attained the highest prediction accuracy for ship motions. It merely indicates that the deep learning
model may not process additional data to further enhance the model's prediction ability to capture ship motion characteristics.

Other models continue to show improvements with additional data before reaching a plateau. Notably, when data is scarce, the
Transformer exhibits the highest accuracy, implying that it has superior learning ability compared to the others and is more
adept at capturing the nonlinear movements of ships influenced by hydrological and meteorological conditions. An RNN model
requires a substantial amount of data to train effectively, and even then, their accuracy may not be sufficient.



Figure 12: The learning capacities of the selected deep learning model

In predicting nonlinear ship motions, the Transformer model excels due to its remarkable accuracy, especially when dealing
with complex dependencies over long sequence in the time domain. However, this model requires substantial computational
power and a large volume of training data. Bi-LSTM and GRU models provide a compromise, handling sequences with
moderate complexity more efficiently and using fewer resources while maintaining dependable accuracy. On the other hand,
traditional ANNs and RNNs are quicker but faultier. The intricacies involved in predicting nonlinear ship motions, render them
less effective for sophisticated tasks.

Figure 10 highlights the diverse proficiencies of various models in capturing the six degrees of freedom (6 DOF) of ship
motions in the time domain. The Transformer model significantly outperforms others in predicting sway motion. However, for
roll and surge predictions, other models also exhibit high accuracy and require less data. There is potential for future research
to explore combining two or more models to predict each motion separately. Such hybrid approaches could enhance the
precision of predictions by leveraging the strengths of diverse modelling techniques.

CONCLUSIONS

The paper presents a framework for the comparison and evaluation of learning capabilities of the selected deep learning
methods that could be used for the prediction of ship motions. To validate the framework, six existing deep learning methods
for ship motion predictions are selected, namely ANN, RNN, LSTM, Bi-LSTM, GRU, and Transformer. The models are used
to train 6 DOF ship motions predictors displaying the influence of nonlinear effects by using the same data streams along ship
trajectories between two ports. It is concluded that their level of accuracy varies (see Table 2 and Figure 11). The paper also
evaluates the learning capacities of these selected models in analyzing the impact of data volumes on their effectiveness by
utilizing datasets of varying lengths. Generally speaking, the transformer model stands out in terms of accuracy.

In the future, results of this comparison and evaluation of the selected deep learning models may assist in selecting appropriate
models for the development of online ship motion prediction tools with adaptive learning capabilities. Such tools are a crucial
component of intelligent navigational decision-making systems.
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