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ABSTRACT 
Accurate prediction of ship fuel consumption is essential for 

optimizing ship performance and minimizing environmental 

impact. This study presents the development and validation of an 

artificial intelligence (AI)-based surrogate model specifically 

designed to predict Ship Fuel Consumption (SFC) in the case of 
a bulk carrier. The surrogate model employs a cutting-edge 

approach by combining deep learning techniques, specifically 

incorporating attention mechanisms into Bidirectional Long 

Short-Term Memory (Bi-LSTM) networks. This advanced model 

leverages a rich and diverse dataset comprising crucial 

operational parameters, including ship navigation, ship 

operational conditions, engine operational status, and Metocean 

data, to achieve highly accurate predictions of SFC. The dataset 

used for training and validation is sourced directly from realistic 

bulk carrier operations, ensuring the relevance and practical 

applicability of the model. Extensive generalization tests were 

conducted to evaluate the performance of the developed 
surrogate model. The results indicate that the AI-based surrogate 

model achieves long-term high accuracy in predicting ship fuel 

consumption under varying operational conditions. The 

developed surrogate model may serve as a valuable tool for bulk 

carrier operators, offering insights into fuel efficiency 

improvements and enhancing the overall sustainability of ship 

operations. 

Keywords: Ship fuel consumption, Artificial Intelligence, 

Deep learning method, Ship Systems  

 

1. INTRODUCTION 
Maritime transport, essential for over 80% of global cargo 

volume, plays a crucial role in global trade and economic growth 

[1]. However, in the face of the Paris Agreement's targets, the 

shipping industry, accounting for 2.89% of global anthropogenic 

emissions, faces the challenge of decarbonizing to reduce 
greenhouse gas emissions by 50% by 2050 as compared to 2008 

levels [2].  

Weather routing is a strategy used in maritime operations to 

reduce SFC and GHG emissions. By optimizing the ship route, 

it enables more efficient operations, leading to lower fuel use. 

The core of the weather routing tool is a ship performance 

evaluation model, which can be used to estimate SFC reflecting 

hydrometeorological conditions. Ship performance evaluation 

models focus on two main aspects, namely, (a) physics-based 

and (b) data-driven models. 

Physics-based models are effective for approximating SFC, 

using methods like ship energy performance and ship resistance 
estimation models [3]. These models consider various factors 

like engine and propeller performance, ship motions, external 

forces, and hydrodynamic effects in both calm water and rough 

conditions [4], highlighting that the accuracy of these models in 

predicting SFC heavily depends on accurately assessing ship 

resistance, including both calm water resistance [5] and added 

resistance from environmental factors[6][7]. Physics-based 

models are useful for ship performance optimization at the early 

stage of ship design. Nevertheless, these models often 

underestimate the time-varying hydrometeorological conditions, 

resulting in limited accuracy in predicting SFC. This limitation 
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arises because physics-based models may not capture the 

nonlinear relationship between ship operational conditions and 

SFC. 

AI and big data technologies present promising solutions for 

addressing the complexities in capturing various factors and 
interactions in physics-based models SFC predictions. AI can 

unravel complex relationships between measured SFC and 

numerous influencing parameters such as navigational 

conditions, ship operational conditions, energy system 

conditions, and hydrometeorological conditions [9]. Recent 

reviews have highlighted the potential of machine learning and 

deep learning methods in this domain. Algorithms are 

categorized into supervised [9][10], and unsupervised machine 

learning methods [11][12], and deep neural network methods 

[13][14]. These approaches offer a sophisticated way to predict 

SFC by integrating a broad range of influential factors. Most of 

the methods have been employed to predict the SFC based on 
diverse data sources [15]. The results indicate that high-

frequency data is meaningful for data-driven models’ 

development. AI and big data models for predicting SFC may 

not be accurate in terms of incorporating complex or extreme 

operational conditions. Detailed problems may involve data 

overfitting and difficulties in managing the complexity of big 

data patterns. 

This paper introduces a deep learning model for the 

development of an AI-based surrogate model, aimed at 

predicting SFC reflecting hydrometeorological conditions. The 

proposed model incorporates complex big data patterns, and a 
range of influencing factors, and employs a Bi-LSTM network 

with attention mechanisms. The method utilizes big data 

collected from real operations of a bulk carrier. After training 

and testing, the AI-based surrogate model can be used to estimate 

SFC in various operational conditions. It concludes that the 

developed approach holds significant potential for contributing 

to environmentally sustainable shipping operations, showcasing 

the potential applicability of advanced AI techniques in realistic 

scenarios. 

 

2. METHODS 
In this paper, a feature importance method, namely, the 

decision tree (DT) methodology, is employed to analyze 

extensive big data records, identifying, and selecting key 

influencing factors that may impact SFC (Step I). This process 

involves the use of a Bi-LSTM network with an attention 

mechanism (Step II). Once trained and tested, the resulting AI-

based surrogate model is capable of estimating SFC across 

various operational conditions (Step III). The methodology is 

structured into three distinct steps, as illustrated in Figure 1, thus 

providing a systematic approach for integrating advanced AI 

techniques with big data analytics to enhance the prediction 

accuracy of SFC in real operations. 

 
FIGURE 1: THE FLOWCHART OF THE DEVELOPMENT OF AN 

AI-BASED SURROGATE MODEL AND ITS APPLICATION. 

 

2.1 Multisource-information fusion and feature 
engineering 

The data collected sensors were installed on a bulk carrier, 

enabling the collection of extensive big data streams during 

operations, see Figure 2. This sophisticated hardware setup 

allowed for the measurement of 266 parameters. However, while 

this data collection system captures a wide and detailed range of 

time-domain parameters, not all are equally crucial for 
estimating SFC, nor do they contribute equally to the accuracy 

of model-derived results. Therefore, the development of a 

variable selection model was deemed necessary to effectively 

reduce data dimensions, ensuring that the most relevant 

parameters are considered in the analysis, thereby enhancing the 

precision and efficiency of the SFC prediction models. 

The section employs a DT method to evaluate the 

significance of variables in relation to SFC, leveraging its 

hierarchical structure of nodes, branches, and leaves, as depicted 

in Figure 3. This method, recognized for its ability to unravel 

intricate relationships between input and output nodes, 

recursively divides datasets based on selected variables, 
potentially generating subsets of big data and forming decision 

rules, see Zhang et al., 2024 [16]. DTs can handle complex 

interactions and nonlinear relationships between variables by 

examining their splits and hierarchy. This approach is 

particularly effective due to its capacity to consider the 

importance of different variables, and it is advantageous for 

producing interpretable results.
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FIGURE 2: THE SENSORS AND THE DATA TYPES. 

 
The DT model can analyze the complex interrelationships 

between various factors and assess their impact on SFC. The 

model evaluates the significance of different variables by 

considering aspects such as the frequency of their use in splitting 

the data and the resulting reduction in variance. This process 

helps to identify the importance of each variable. Variables with 

high importance values signify a strong influence on SFC, 
indicating that they play a significant role in determining or 

predicting SFC. 

A crucial aspect of this approach is the selection of the top 

'k' variables based on their ability to enhance prediction accuracy 

when used as inputs for the deep learning model (discussed in 

Section 2.2 of the paper). Interestingly, the analysis of the big 

data records suggested that altering the number of variables 

(either increasing or decreasing) could negatively affect the 

model's accuracy. Consequently, the selected top 'k' variables are 

used as inputs, see Figure 3. This selection and utilization of 

variables ensure the effectiveness and accuracy of the model in 
predicting SFC. 

 

2.2 AI-based surrogate model development and 
validation 

To develop an AI-based surrogate model, a deep learning 

method based on Bi-LSTM with an attention mechanism is 

adopted, see [8]. The architecture of the deep learning model is 

illustrated in Figure 4. The deep learning model incorporates 

both past and future dependencies and hence it can capture and 

utilize historical information efficiently. By considering past 

data trends and future operational scenarios, the model is 

designed to provide a comprehensive analysis of the SFC. The 

inclusion of attention mechanisms further enhances its capability 

by allowing it to focus on historical trends. This combination of 

predictive capabilities and focused data analysis positions the 

model as a potentially powerful tool for the accurate and efficient 

development of an AI-based surrogate model.  

 
FIGURE 3: VARIABLES SELECTION USING DT. 

Details of the deep learning model can be summarized with 

regard to the input layer, the Bi-LSTM layer, the attention 
mechanism, and the output layer as follows: 

The input to the model incorporates essential variables 

analyzed through the DT model, as depicted in Figure 3. These 

chosen variables undergo pre-processing before being supplied 

to the following layers of the model.
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FIGURE 4: VARIABLES SELECTION USING DT. 

 

The Bi-LSTM model described is composed of layers, each 

containing two LSTM sub-layers. Each LSTM unit within these 
layers has four interconnections that manage input and control 

signals (𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡) for the input, forget, and output gates, crucial 

for regulating memory storage, retention, and output. The model 

processes inputs at each time increment (𝑥𝑡  and ℎ𝑡−1 ) using 

distinct weight vectors and an activation function to generate 

control signals for these gates (see red box in Figure 4). The 

mathematical framework of this process is detailed in Eqs (4-6), 

which describe the weight vectors (𝑤), activation amounts (𝑏), 

biases for different connection weights (𝑏𝑓, 𝑏𝑖, and 𝑏𝑜), and the 

sigmoid activation function (𝜎 (·)). This structure enables the 

LSTM units to effectively handle time-series data, which is 

essential for the accurate prediction of SFC. 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                   (1) 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                   (2) 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                  (3) 

The state of a cell 𝐶̃𝑡 is presented as per Eq. (4). The value 

of the memory unit 𝐶𝑡 is updated according to Eq. (5). 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)               (4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡                     (5) 

The output of hidden layer neurons ℎ𝑡 is defined as: 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                        (6) 

where tanh  (·) represents a hyperbolic tangent activation 

function. 

To effectively predict SFC in the complex operational 

conditions of ships, deep learning models need to learn from both 

past and future data. Standard LSTM models only consider past 

information, but Bidirectional LSTM layers, as discussed by 

Zhang et al. (2024) [8], address this by including both forward 
and backward LSTM sublayers. This enables Bi-LSTM models 

to process information from both past and future time frames, 

thus capturing the intricate dynamics of ship systems more 

accurately and enhancing the precision of SFC predictions. 

Forward sublayers process the input stream in a forward 

fashion, i.e., from the beginning 𝑡𝑏 to the end 𝑡𝑒. The sublayers 
operate conversely to this (i.e., in a backward direction: from the 

end 𝑡𝑒  to the beginning 𝑡𝑏). Given an input data stream 𝑋 =
[𝑥1, 𝑥2, . . . , 𝑥𝑛] , a Bi-LSTM generates hidden states in both 

forward and backward directions as per Eqs. (7-8). Then, the 

hidden states from both directions are concatenated to obtain a 

comprehensive representation at each time step see Eq. (9). 

ℎ𝑡
⃑⃑  ⃑ =  LSTM (𝑥𝑡 , ℎ𝑡−1

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )                      (7) 

ℎ𝑡
⃐⃑ ⃑⃑ =  LSTM (𝑥𝑡 , ℎ𝑡−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑⃑)                     (8) 

ℎ𝑡 = [ℎ𝑡
⃐⃑ ⃑⃑ ;  ℎ𝑡

⃑⃑  ⃑]                            (9) 

where 𝑡  represents the time step, and ℎ𝑡
⃑⃑  ⃑ is the hidden 

state in the forward direction. ℎ𝑡
⃐⃑ ⃑⃑  is the hidden state in the 

backward direction, [; ] denotes the concatenation. 

The attention mechanism in the model, as discussed by 

Zhang et al. (2023) [16], enhances its ability to handle input data 
streams by dynamically focusing on different parts and assigning 

varying importance to different time steps. This feature is 

particularly useful in emphasizing critical information and 

capturing extreme scenarios in the data. It operates by calculating 

attention scores and weights for each time step, based on the 

hidden representations from the Bi-LSTM layers, thereby 

improving the effectiveness in processing and interpreting the 

data. Given a specific time step 𝑡, the attention weight 𝛼𝑡𝑗 of 

other hidden layers for the current input of 𝑥𝑡 is calculated as 
given in Eq. (10). 

𝛼𝑡𝑗 =
exp(𝑒𝑡𝑗)

∑ exp (𝑒𝑡𝑗)
𝑛
𝑗=1

                        (10) 

In the additive attention model, the attention score 𝑒𝑡𝑗  is 

calculated as specified in Eq. (11). In this equation, 𝑤µ and 𝑤𝑤 

denote the weights of the fully connected layers involved in the 

model. Additionally, 𝑏𝑤  represents the bias associated with 

different connection weights. These elements collectively 
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contribute to the calculation of 𝑒𝑡𝑗. Following this computation, 

the derived information is utilized to determine the attention 

weights, which are crucial for the functioning of the attention 

mechanism. This process is further detailed in reference [17]. 

𝑒𝑡𝑗 =   𝑤µ
𝑇 ∗ 𝑡𝑎𝑛ℎ(𝑤𝑤ℎ𝑡 + 𝑏𝑤)           (11) 

The context vector 𝑐𝑡  is defined as the weighted sum of the 

hidden states in the model, representing the attended information 

at a specific time step 𝑡. This concept is articulated in Eq. (12). 

Essentially, 𝑐𝑡  captures the relevant information from different 

time steps, weighted according to their importance as determined 

by the attention mechanism. This process allows the model to 

focus on the most pertinent information at each time step, 

enhancing its predictive or analytical capabilities. 

𝑐𝑡 = ∑ 𝛼𝑡𝑗ℎ𝑡𝑗
𝑛
𝑗=1                         (12) 

The final output  𝑆𝐹𝐶𝑡  at a time step t  is generated by 

passing the context vector 𝑐𝑡  through linear transformation and 
an activation function, see Eq. (13). 

𝑆𝐹𝐶𝑡 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑤𝑐𝑐𝑡 + 𝑏𝑐)             (13) 

In the above expression, 𝑤𝑐 , and 𝑏𝑐   are parameters 

(weight matrices or vectors) that are typically trained and 

determined during the process of model training. 

The output layer of the model receives a context vector that 

is formulated as a weighted combination of hidden 

representations, which are generated from the attention 

mechanism process. This context vector is designed to 

effectively capture the most relevant information from the input 
data stream. By focusing on key elements that are crucial for the 

specific prediction task at hand, the context vector enables the 

model to make more accurate and relevant predictions. This 

method of selectively concentrating on the most important parts 

of the input data is a fundamental aspect of the attention 

mechanism, enhancing the overall performance and accuracy in 

predictive analysis. The output layer then processes these context 

vectors to predict SFC for each specific time step, making use of 

the concentrated and relevant information provided by the 

context vector to enhance the accuracy and relevance of its 

predictions. 
To assess the accuracy and calculate the discrepancies 

between the actual and the predicted value, several statistical 

measures were employed: Root Mean Square Error (RMSE), 

Mean Square Error (MSE), the coefficient of determination (R2 

value), and error rates (𝑒𝑛). These metrics were evaluated as 

outlined in Eqs. (14-17). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑛 − 𝑦𝑛

∧
)2𝑁

𝑛=1                (14) 

MSE =
1

𝑁
∑ (𝑦𝑛 − 𝑦𝑛

∧
)2𝑁

𝑛=1                   (15) 

𝑒𝑛  = (𝑦𝑛 − 𝑦𝑛

∧
)/(𝑦𝑛)                     (16) 

𝑅2  = 1 − ∑ (𝑦𝑛 − 𝑦𝑛

∧
)2𝑁

𝑛=1 /∑ (𝑦𝑛 − 𝑦𝑛

−
)2𝑁

𝑛=1   (17) 

where, 𝑦𝑛  is the actual value, 𝑦𝑛

∧
 denotes the predicted 

value, 𝑦𝑛

−
 is the mean value. 

 

2.3 SFC estimation in real conditions 
The ship performance models presented in this paper are 

categorized into two types namely empirical and semi-empirical. 

They serve to estimate calm water resistance and additional 

resistance due to wind and waves[18]. Subsequently, these 

models are applied in testing ship performance during the design 

phase [7] and in operational route planning [19]. Therefore, these 

models are often used to develop surrogate models in ship design 
and routing. However, they are often time-consuming and 

underestimate the influence of time-varying 

hydrometeorological conditions. This section introduces the 

utilization of pre-trained models for the prediction of SFC 

aiming to enhance the precision and efficiency of future weather 

routing systems. 

In Sections 2.1 and 2.2, the focus is on collecting historical 

data related to ship performance, weather, sea conditions, and 

navigational routes and determining key influencing features. A 

key aspect involves evaluating the predictions against actual ship 

performance to ensure accuracy. The results indicate that the 

effectiveness of the AI-based surrogate model hinges on its 
ability to accurately represent the nonlinear relationship between 

hydrometeorological conditions and SFC. Therefore, the AI-

based surrogate model, is presented as an 'out-of-the-box' tool, 

see Figure 5. Such a model may be suitable for integration into 

ship navigation systems, bringing forth benefits such as 

improved prediction of fuel efficiency, enhanced safety, and 

optimized ship operations, see Section 3.3. 

 

 
FIGURE 5: SHIP PERFORMANCE TESTING FOR WEATHER ROUTING USING AN AI-BASED SURROGATE MODEL. 
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3. CASE STUDIES 
To validate the deep learning method for the development 

of an AI-based surrogate, the study utilized extensive big data 

records from real operations of a bulk carrier operated by 

Laskaridis Shipping Co. Ltd. This carrier has a deadweight 
tonnage (DWT) of 81,600.0 tons and dimensions of 229.0 meters 

in length and 32.0 meters in breadth. Figure 6 shows the voyages 

this ship undertook over a two-year period, from February 2021 

to January 2023.  

The dataset utilized for validation is extensive, consisting of 

over 1 million data entries, with each entry encompassing 266 

parameters. This involved big data analytics techniques to gather 

information about ship navigation, engine performance, and 

operational conditions. A graphical depiction of these collected 

data instances is presented in Figure 7. The data was gathered at 

60-second intervals, offering a comprehensive and detailed 

dataset for the thorough assessment and validation of the deep 
learning methodology. 

The dataset used for this validation is substantial, 

comprising over 1 million data records, with each record 

containing 266 parameters. Big data analytics involved acquiring 

information on ship navigation, engine, and ship operational 

conditions as well as Metocean data, and a visual representation 

of the collected data instances is given in Figure 7. Data was 

collected at an interval of 60 seconds, providing a rich and 

detailed dataset for the evaluation and validation of the deep 
learning approach. 

 
FIGURE 6: SHIP TRAJECTORIES OF SHIP OPERATION AT SEA 

OF A BULK CARRIER (February 2021 – January 2023). 

 

 
FIGURE 7: VISUAL REPRESENTATION OF THE COLLECTED DATA SAMPLES.

 
3.1 key variables selection using DT 

Addressing the challenge of pinpointing key factors and 

excluding irrelevant data, the study implemented the DT 

regression method as detailed in Section 2.1. This method 

considered 266 variable sets, which included 265 parameters 

alongside SFC. The primary objective was to analyze time 

domain signals to derive significant insights into factors 

influencing SFC. For this purpose, 265 variables were 

categorized as the X database, while SFC was defined as the Y 

database. These X and Y databases were divided into training 

and testing sets, with the training set comprising 80% of the total 

data streams and the testing set making up the remaining 20%. 

To efficiently train the DT model, these substantial data sets 
were normalized. Further details on this process can be found in 

Zhang et al. (2024) [8]. The optimization of the DT model, along 

with the analyzed dataset, facilitated the assessment of variable 

importance, as depicted in Figure 8. Based on the importance of 

these variables and practical requirements, key factors such as 

ship navigation information (including ship speed, course, and 

heading), ship operation condition information (like draft as well 

as trim), engine operation data (main engine shaft RPM, main 

engine temperature), and external operational conditions were 

identified as primary control parameters, as shown in Figure 9. 
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These parameters play a crucial role in managing the ship energy 

and navigation systems. 

 

3.2 The development of AI bases surrogate for ship 
fuel consumption prediction 

Utilizing the gathered data streams, as illustrated in Figure 

2, a DT model was employed to categorize and pinpoint the 

primary influencing factors on SFC, as shown in Figure 8. In this 

phase of the study, a Bi-LSTM architecture, enhanced with an 

attention mechanism, was developed for the purpose of training 

AI-based surrogate models. This approach aimed to leverage the 

sequential nature of the data for more effective and insightful 
analysis. The process of the development of AI-based surrogates 

includes the training stage and testing stage, see Figure 9.

 
FIGURE 8: VISUALIZATION OF THE DT MODEL (THE FIRST FOUR LEVELS). 

FIGURE 9: THE PROCESSING FOR TRAINING AND TESTING AI BASES SURROGATE. 
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The process of training, validation, and testing of a deep 

learning model for the development of an AI-based surrogate 

model is illustrated as follows:  

(1) Model training and cross-validation 

In training the deep learning model, the study implemented 
an architecture, as shown in Table 1. The optimal parameters 

were then identified based on achieving the lowest MSE during 

the validation process, as detailed in reference [16]. Details of 

the characteristics of the model and the chosen hyperparameters 

are concisely outlined in Table 1. 

Training and validation losses were calculated using 80% of 

the dataset for training and 20% for validation, respectively. As 

shown in Figure 10, both training and validation losses decreased 

and eventually stabilized around the 178th epoch. This indicates 

that if no further improvement in validation performance is 

observed beyond this point, it would be prudent to terminate the 

training process early to prevent overfitting. 
 

TABLE 1: THE PARAMETERS OF THE MODEL. 

 
 

In this case study, after completing 178 epochs, the deep 

learning model reached a state of optimal fitting. This suggests a 

balanced convergence between the performance and the training 

data, indicating that the model is well-tuned to the data 

complexity without overfitting or being overly simplistic. The 
state of optimal fitting signifies that the model has achieved a 

desirable balance in capturing the intricacies of the big data 

without falling into the traps of overfitting or underfitting. Figure 

10 also implies that the deep learning model can achieve an 

optimal fit by effectively mitigating both overfitting and 

underfitting. Furthermore, the MSE obtained through 5-fold 

cross-validation was reported as 2.04e-2, demonstrating the 

accuracy and efficacy of the model. 

 

(2) Model testing 

The deep learning model, once trained, was saved as an AI-
based surrogate model specifically for predicting SFC. To ensure 

its broad applicability, this AI-based surrogate model underwent 

testing with extensive data streams derived from operational 

data. This test data corresponded to the period from February 

2023 to June 2023, covering a total of 8 worldwide voyages, as 

depicted in Figure 11. Within this dataset, the voyages varied 

significantly in length, with the longest journey spanning 7223.9 

nautical miles and the shortest covering 980 nautical miles. 

These details, including the distances of each voyage, are 

systematically presented in Table 2. Figure 11 demonstrates the 

use of the time-domain profile of the trained model to predict 

SFC across all the voyages. The differences between the actual 

and predicted SFC values were quantified using evaluation 

metrics such as the coefficient of determination (𝑅2 , RMSE, 

MAE, and 𝑒𝑛 ). These results are detailed in Table 2 and 

illustrated in Figure 12. The analysis revealed that the 𝑅2 

values varied between 0.71 and 0.94 across different voyages. 
Specifically, Voyage 2 showed the most accurate predictions, 

with the smallest MAE recorded at 28.19 L/h and the lowest 

RMSE at 38.99 L/h. In terms of the average error rate 𝑒𝑛, which 

ranged from -0.51% to 5.56%. 

These results affirm the viability of deploying the AI-based 

surrogate model as an efficient tool for forecasting SFC during 

comparable voyages, indicating that the AI-based surrogate 

model can capture the nonlinear relationship between 

hydrometeorological conditions and SFC in ship systems in real 

operational conditions. Consequently, the AI-based surrogate 

model can be out of box for evaluating the SFC in time-varying 
operational conditions.  

 

 
FIGURE 10: THE MODEL PERFORMANCE EVALUATION. 

 

 
FIGURE 11: SFC PREDICTION FOR 8 GLOBAL VOYAGES 

USING THE AI-BASED SURROGATE MODEL. 
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TABLE 2: The Results Of GENERALIZATION ABILITY EVALUATION. 

 
 

 
FIGURE 12: THE COMPARISONS. 

 

3.3 Ship performance testing using an AI-based 
surrogate model 

In this section, voyage 1 is used to carry out a case study and 

analyze the impact of the hydrometeorological conditions on 

SFC using an AI-based surrogate model.  

(1) Ship performance testing in calm waters or in real 

operation. In this test, the hydrometeorological conditions 

(wave, wind, and current) are set to zero, indicating that the ship 

operates in calm waters. Subsequently, the SFC is estimated 

using the AI-based surrogate model. Figure 13 shows the 

predicted SFC in calm waters compared to the actual SFC in real 

operations. It reveals that operating the ship in calm waters can 

lead to a 7.27% reduction in SFC compared to real operational 
conditions.  

(2) Ship performance testing against or following wind. In 

this test, an AI-based surrogate model is utilized to estimate the 

impact of wind on SFC. Three distinct data sets are created 

namely (a) a real wind model that maintains wind speed and 

direction while setting wave and current data to zero; (b) an 

against wind model that keeps the wind speed constant with 

direction against ship heading and setting current data to zero 

and (c) a following wind model that maintains the same wind 

speed with the direction following the ship heading, also with 

current data set to zero. Figure 14 illustrates that when the ship 
is following the wind, there is a 1.15% reduction in SFC as 

compared to when it is against the wind. Additionally, the SFC 

of the ship under actual wind conditions is higher than when 

following the wind but lower than when against the wind. 

(3) Ship performance testing against or following wave 

In this test, the setting for analyzing wave conditions mirrors 

the methodology used for wind. Three distinct scenarios are 

created: (a) keeping wave conditions consistent while nullifying 

wind and current data, to isolate wave impact on SFC; (b) setting 

wave direction against the ship heading with no current and no 

wind, to assess SFC in opposing wave conditions; and (c) 

aligning wave direction with the ship heading and eliminating 
current and wind data, to evaluate SFC with following waves.  

Figure 15 illustrates that when the ship is following the 

wave, there is a 4.11% reduction in SFC as compared to the 

against wave scenario. Additionally, the SFC of the ship under 

actual wave conditions is higher than when following the wave 

but lower than when against the wave. This test, akin to the wind 

scenarios, serves to distinctly evaluate the influence of wave 

conditions on the ship's fuel efficiency and ship performance. 
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FIGURE 13: SFC IN CALM WATERS OR IN REAL OPERATIONS. 

 
FIGURE 14: THE COMPARISON OF SFC AGAINST OR FOLLOWING THE WIND. 

 
FIGURE 15: THE COMPARISON OF SFC AGAINST OR FOLLOWING THE WAVE. 

 
FIGURE 16: THE COMPARISON OF SFC AGAINST OR FOLLOWING THE CURRENT. 

 
(4) Ship performance testing against or following current 

In the current testing phase, the methodology parallels those 

used for wind and wave conditions, aiming to understand the 

impact of current on SFC. This involves three key scenarios: (a) 

Real current: maintaining constant current conditions while 

eliminating wind and wave effects to isolate the current impact 

on SFC; (b) Against current: directing the current against the ship 

heading and nullifying wind and wave data, to assess the SFC 

when facing opposing currents; and (c) Following current: 

aligning the current with the ship heading, with wind and wave 

influences removed, to evaluate the SFC benefits in following 

current conditions.  
Figure 16 illustrates that when the ship is following the 

current, there is a 1.95% reduction in SFC compared to when it 

is against the current. Additionally, the SFC of the ship under 



 11 © 2024 by ASME 

actual current conditions is higher than when following the 

current but lower than when against the current.  

The study assumes uniformity in the ship energy system and 

maintains a consistent speed throughout the various scenarios. 

These results underscore the effectiveness of the AI-based 
surrogate model in comprehending how hydrometeorological 

conditions affect SFC. Additional testing across various 

scenarios is required for further validation in future studies.  

 

4. CONCLUSIONS 
The paper presents a deep learning approach that utilizes an 

AI-based surrogate model using high-frequency data from ship 

operations. To validate this method, extensive data records 

spanning over two years of a Kamsarmax bulk carrier were 

utilized. The innovative application of a data-driven method 

combining DT and Bi-LSTM models with an attention 

mechanism for time-domain SFC prediction is promising. The 
Bi-LSTM model, enhanced with attention mechanisms, is 

particularly effective for developing an AI-based surrogate 

model to predict SFC. This is because it captures the 

characteristics of the ship energy system while considering real 

operational conditions over extended periods. The developed AI-

based surrogate model estimates the impact of 

hydrometeorological conditions on SFC, and the results align 

well with real-world scenarios. The results show that, for voyage 

1, dynamic hydrometeorological conditions lead to a 7.27% 

increase in SFC compared to calm water conditions, with waves, 

wind, and currents each having a significant impact (See Figures 
13-16). In the future, further validation case studies utilizing 

physics-based models will be used to inform and enhance the AI-

based surrogate model. 
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