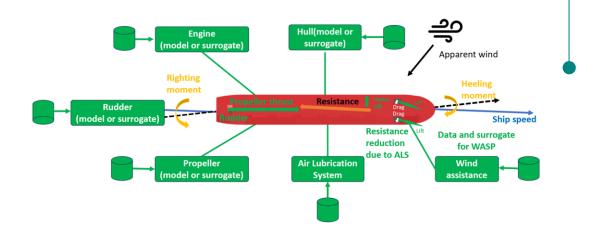


Funded by

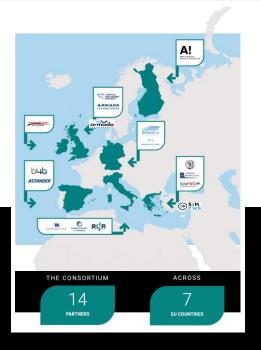

General Objective

The project's general objective is to create an advanced **web-based Decision Support System (DSS)**, featuring a catalogue of retrofitting solutions that are up-to-date and ready to be deployed at the end of the project and shall be easily extendable afterwards. The DSS will allow combination of retrofitting solutions in order to achieve a GHG emission reduction of 35% compared to the original design

Approach

The project addresses the targets of the Zero-Emission Waterborne Transport Partnership, i.e. to develop and demonstrate solutions reducing the fuel consumption of waterborne transport by at least 55% before 2030 compared to 2008

This project has received funding from the European Union's Horizon Europe Research & Innovation program under Grant Agreement No. **101096068**.


Issue 1 - October 2024

e-Newsletter

RETROFIT55 OUTPUTS

- Solutions exploited by the project address the ship efficiency improvement (Air Lubrication Systems, Smart Energy Management, holistic Hydrodynamic and Operational optimization), as well as renewables or zero- and low-emission energy sources (Wind Assisted Propulsion, Fuel Cells, and hybridization of the propulsion system).
- A Decision Support System (DSS) will be developed featuring a catalogue of retrofitting solutions that are up-to-date and easily extendable afterwards, while developed and demonstrated at TRL 7-8, suitable for different ship types and operational contexts accounting for safety aspects, cost- effectiveness, and life-cycle costs

Partners

Inside this Issue:

- Explore RETROFIT55
- Find out about the project's structure
- What are the objectives of each Work Package
- Which technologies are being evaluated
- ✓ How we target to achieve 55% reduction of GHG emissions

Website:

https://www.retrofit55.eu

Read more about:

✓ The project <u>here</u>
 ✓ The partners <u>here</u>
 Check EC CORDIS factsheet
 published in <u>here</u>

Follow us on: **in**

e-Newsletter

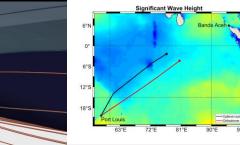
Funded by

n I lai

Hydrodynamic Optimization (WP2)

Explore and provide retrofitting solutions for improving the ship's hydrodynamic design

Specific objectives


- Optimize realistic operational profile based on operational data
- Interaction between hydrodynamic design and energy saving devices
- Hydrodynamic optimization with Wind Assisted Propulsion (WASP)
- Hydrodynamic optimization with Air Lubrication System (ALS)

Operational Synthesis and Optimization (WP3)

- Evaluating and optimising for the current ship performance status
- Evaluation of the impact of retrofit measures (e.g., WASP & ALS) in realistic operational and weather conditions

Specific objectives

- **Monitoring** of ship performance (hull, propeller, fuel reduction)
- · Optimizing maintenance options
- Evaluation of anti-fouling measures
- Combined effect with weather routing
- Optimization of the retrofit system use

Wind Assisted Ship Propulsion (WP4)

Provide tangible examples of WASP for inclusion in the overall ship model and digital twin

Specific objectives

- Specification of a wind propulsion system
 suitable for retrofit to
 existing vessels
- Ensure **compatibility** with operational requirements
- Evaluate risks and gain class approval in principle
- Provide design inputs for numerical analysis for digital twin
- Development of prototypes for demonstration, trials, measurement and validation

Air Lubrication System (WP5)

Develop a Passive Air Lubrication System (PALS) from TRL4 to TRL 7 to deliver 8-12 % fuel savings

Specific objectives

- Determine the full PALS System design and layout
- Optimise the system to deliver 8-12 % fuel savings
- Evaluating risks and devising mitigation plans
- Obtaining Classification Approval in Principle (AIP)

This project has received funding from the European Union's Horizon Europe Research & Innovation program under Grant Agreement No. **101096068**.

e-Newsletter

Funded by

n Ilai

Electrification and Energy Management of on-board Systems (WP6)

Design of retrofitting solutions for increased ship electrification with carbon-free solutions

Specific objectives

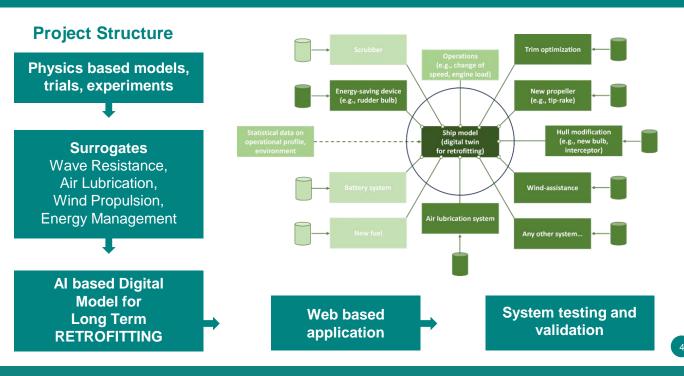
Combination of batteries and renewable sources (e.g, FCs and PVs) Hybridization of electrical power drives Integration of a suitable energy management system

Technology Demonstration (WP7)

Technology demonstration activities: feasibility of the combined use of technologies developed/assessed in real conditions

Specific objectives

WASP systems installation and see trial protocol Sea trial data processing using AI methods Real demonstration of weather routing system Virtual demonstrations of WASP and ALS systems



Safe and sustainable retrofitting solutions (WP1)

Develop and validate an AI informed Decision Support System for the selection, combination and implementation of various RETROFITTING technologies

Objectives

Demonstrate that suitable synthesis of techs may lead to at least 35 % reduction in GHG emissions

This project has received funding from the European Union's Horizon Europe Research & Innovation program under Grant Agreement No. **101096068**.